ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(1\right)\)
Xét ΔABD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
=>\(\dfrac{BH}{BD}=\dfrac{BK}{BC}\)
Xét ΔBHK và ΔBDC có
\(\dfrac{BH}{BD}=\dfrac{BK}{BC}\)
\(\widehat{HBK}\) chung
Do đó: ΔBHK đồng dạng với ΔBDC