Cho tam giác ABC vuông tại A AB lớn hơn AC đường cao AH Gọi E F lần lượt là hình chiếu của H trên AB AC a. Chứng minh AE x AB = AF x AC b. Vẽ đường tròn tâm O đường kính BC Chứng minh A thuộc đường tròn tâm O c. Gọi M là trung điểm của AC tiếp tuyến của O tại A cắt tia OM tại N Chứng minh NC là tiếp tuyến của đường tròn tâm O tại C
Cho ∆ABC nhọn có AB < AC. Vẽ đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại E và D . Gọi H là giao điểm BD và CE; AH cắt BC tại I.
a) Chứng minh AI vuông góc với BC
b) Vẽ AM, AN tiếp xúc (O) tại M và N. Chứng minh IA là tia phân giác góc \(\widehat{MIN}\)
c) Chứng minh ba điểm M, H , N thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=8 cm,CH=18 cm.Gọi D,E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC . Gọi M và N lần lượt là trung điểm của HB và HC . Tính SDENM ?
2 Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 4cm BC = 5cm m) Tinh BH.AH hat B' (độ lớn của góc làm tròn kết quả đến phút) b) Gọi E và F lần lượt là hình chiếu của H trên AB, AC. Chứng minh . AE.AB = AF.AC c) Gọi M là trung điểm của BC. Chứng minh S AEMF = 1/ 2 S ABC
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Kẻ đường cao AH
a) Giải tam giác vuông ABC (góc làm tròn đến phút).
b) Gọi G, K là hình chiếu của H lần lượt lên AB và AC. Chứng minh rằng: AG.AB=AK.AC
Bài 2: Cho vuông tại A, đường cao AH có , đường cao AH có HB=9cm,HC=16cm
a) Tính AB, AC và AH.
b) Hạ HD vuông góc AB,HE vuông góc AC . Tính chu vi và diện tích tứ giác ADHE.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
c.Chứng minh AD là tia phân giác của góc MAH.
Cho tam giác ABC có cạnh AB < AC. Các đường cao AD và BE của tam giác ABC cắt nhau tại H. Gọi I đối xứng với H qua D. Gọi M và N lần lượt là hình chiếu vuông góc của I trên AB và AC.
a) Chứng minh tứ giác ABDE nội tiếp và góc \(\widehat{CAD}=\widehat{CBI}\) ?
b) Chứng minh rằng góc \(\widehat{MDI}=\widehat{ACI}\) và tam giác ACI đồng dạng với tam giác MDI ?
c) Gọi P và Q lần lượt là trung điểm của MD và AC. Chứng minh rằng góc \(\widehat{IPQ}=90^0\) ?
P/s: Nhờ thầy cô và các bạn giúp đỡ ý c với ạ, cám ơn nhiều ạ!
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.