a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trực của BC
hay OA⊥BC
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trực của BC
hay OA⊥BC
Cho (O) qua điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AB và AC với đường tròn.(BC là tiếp điểm).Kể đường kính BD,đường thẳng DC cắt BA tại E,AO cắt BC tại H,đường thẳng qua C và vuông góc với BD cắt AD tại K. Chứng minh rằng AB = AE
Cho (O) qua điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AB và AC với đường tròn.(BC là tiếp điểm).Kể đường kính BD,đường thẳng DC cắt BA tại E,AO cắt BC tại H,đường thẳng qua C và vuông góc với BD cắt AD tại K. Chứng minh rằng AB = AE
từ một điểm A nằm ngoài đường tròn (O;R), kẻ 2 tiếp tuyến AB, AC với (O;R)(B và C là tiếp điểm). Vẽ đường kính BD a) chứng minh AO vuông góc BC tại H và CD song song OA b)AD cắt đường tròn tại K. chứng minh AD.AK=AH.AO
Cho đg tròn `(O;R)` , dây `BC` khác đg kính . Qua `O` kẻ đường vuông góc với `BC` tại `I` , cắt tiếp tuyến tại `B` của đường tròn tại điểm `A` . Vẽ đường kính `BD`. Đường thẳng vuông góc với `BD` tại `O` cắt `BC` tại `K` . Chứng minh rằng :
`a)`\(CD//OA\)
`b)AC` tiếp tuyến của đường tròn `(O)`
`c)IK*IC+IO*IA=R^2`
Từ điểm A nằm ở bên ngoài đường tròn vẽ hai tiếp tuyến AB và AC .H là giao điểm của AO và BC .Kẻ dây BD song song với AO. đường thẳng AD cắt đường tròn O tại điểm thứ hai là E.kẻ BE cắt AO tại K Cm a)tứ giác ABOC nôi tiếp b)AK^2=KE.KB
cho đt (O) và A nằm ngoài đt. Từ A kẻ tiếp tuyến AB,AC (B,C là tiếp điểm). Đường thẳng CO cắt (O) tại D (D≠C). AD cắt (O) tại E (E≠A). BE cắt AO tại F, AO cắt BC tại H.
Chứng minh HE vuông góc BF. Và \(\dfrac{HC^2}{AF^2-È^2}-\dfrac{DE}{AE}=1\\ \)
Cho ABC nội tiếp đường tròn (O; R) đường kính BC (AB< AC). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại N, ON cắt AC tại K
a/ Chứng minh rằng ON vuông góc AC tại K và AN.AB = AK.BC.
b/ Gọi I là trung điểm của AB kẻ AH vuông góc BC tại H. Chứng minh rằng 5 điểm A, I, H, O, K cùng thuộc một đường tròn. Xác định tâm của đường tròn đó.
c/ AH cắt NO tại L, AL cắt (O) tại điểm P (khác A), tia KL cắt (O) tại M. Chứng minh tứ giác ALCN là hình thoi và LP. LC = R²- OL²
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Kẻ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp
b) Qua B kẻ đường thẳng song song với AO, cắt đường tròn (O) tại điểm thứ hai E. Chứng minh 3 điểm C, O, E thẳng hàng
c) Gọi I là giao điểm của đoạn thẳng AO với đường tròn (O), chứng minh I là tâm đường tròn nội tiếp tam giác ABC
d) Trên cung nhỏ BC của đường tròn (O) lấy điểm M tùy ý. Kẻ MR vuông góc với BC, MS vuông góc với CA, MT vuông góc với AB. Chứng minh: MS.MT = MR2