(ko cần vẽ hình)
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.
a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?
b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)
a: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
=>\(\dfrac{BA}{6}=cos60=\dfrac{1}{2}\)
=>BA=3(cm)
ΔACB vuông tại A
=>\(BA^2+AC^2=BC^2\)
=>\(AC^2+3^2=6^2\)
=>\(AC^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot CB=CA^2\)
=>\(CH\cdot6=27\)
=>CH=4,5(cm)
b: Sửa đề: \(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(AK^2=KD\cdot KC\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
=>\(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
c: \(\widehat{ABC}+\widehat{CBD}=180^0\)(hai góc kề bù)
=>\(\widehat{CBD}+60^0=180^0\)
=>\(\widehat{CBD}=120^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-60^0=30^0\)
Xét ΔDBC có BD=BC
nên ΔBDC cân tại B
=>\(\widehat{BDC}=\widehat{BCD}=\dfrac{180^0-\widehat{DBC}}{2}=30^0\)
Xét ΔACB vuông tại A và ΔADC vuông tại A có
\(\widehat{ACB}=\widehat{ADC}\)
Do đó:ΔACB đồng dạng với ΔADC
=>\(\dfrac{BC}{CD}=\dfrac{AC}{AD}\)
=>\(\dfrac{BC}{AC}=\dfrac{CD}{AD}\)
mà BC=BD
nên \(\dfrac{BD}{AC}=\dfrac{CD}{AD}\)
=>\(\dfrac{BD}{CD}=\dfrac{AC}{AD}=tanD\)