`a.`Xét tam giác ABC vuông A, đcao AH:
\(AC^2=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(AH=\sqrt{\dfrac{AB^2.AC^2}{AB^2+AC^2}}=\sqrt{\dfrac{12^2.16^2}{12^2+16^2}}=9,6\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\) \(\Rightarrow\widehat{B}\simeq53^o\)
`b.`Xét tam giác AHC vuông H, đcao HF:
\(AH^2=AF.AC\) (1)
Xét tam giác AHB vuông H, đcao HE:
\(AH^2=AE.AB\) (2)
\(\left(1\right);\left(2\right)\Rightarrow AF.AC=AE.AB\)
\(\Leftrightarrow AF=AE.\dfrac{AB}{AC}\)
\(\Leftrightarrow AF=AE.\tan C\) ( vì \(\tan C=\dfrac{AB}{AC}\) )