Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jin44

Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE vuông góc AB tại E ; vẽ HF vuông góc AC tại F. Chứng minh: (AE.AB)/(EF.BC) = AF/AB

Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 10:29

Xét ΔFHA vuông tại F và ΔACB vuông tại A có

\(\widehat{FHA}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA đồng dạng với ΔACB

=>\(\dfrac{AF}{AB}=\dfrac{HA}{CB}\)

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>AH=EF

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(EF\cdot BC=AH\cdot BC\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

\(\dfrac{AE\cdot AB}{EF\cdot BC}=\dfrac{AH^2}{AH\cdot BC}=\dfrac{AH}{BC}=\dfrac{AF}{AB}\)


Các câu hỏi tương tự
Razen
Xem chi tiết
Lưu Thị Thu Hậu
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Hoàng Phạm Kim Phụng
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
James Pham
Xem chi tiết
Lê Hiếu
Xem chi tiết
Trần Thuỳ Lâm
Xem chi tiết
Thư Nguyễn
Xem chi tiết