Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng với ΔACB
=>\(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{AD}{AC}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)
Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng với ΔACB
=>\(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{AD}{AC}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)
Cho tam giác ABC nhọn. Các đường cao AH, BK, CL. Chứng minh rằng:
a) \(\left(\dfrac{AK}{AB}\right)^2=\dfrac{AL.BK}{AC.BC}\)
b) \(\dfrac{S_{AKL}}{S_{ABC}}\)
c) \(\dfrac{S_{HKL}}{S_{ABC}}=1-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
Cho tam giác ABC có 3 góc nhọn , các đường cao AH , BN , CM .
Chứng minh :
a) Tam giác ANM đồng dạng tam giác ABC
b) \(\frac{S_{HNM}}{S_{ABC}}=1-cos^2A-cos^2B-cos^2C\)
Cho tam giác ABC nhọn. Ba đường cao AH, BI, CK. CMR :
a. \(S_{AIK}\) = \(cos^2A\) . \(S_{ABC}\)
b. \(S_{IHK}=\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)
Giúp mk với ạ, mk đang cần gấp
Cảm ơn mọi người nhiều!
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm, BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc \(\widehat{B},\widehat{C}\) và đường cao AH của tam giác
b) Tìm tập hợp các điểm M sao cho \(S_{ABC}=S_{BMC}\)
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm, BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc \(\widehat{B},\widehat{C}\) và đường cao AH của tam giác
b) Tìm tập hợp các điểm M sao cho \(S_{ABC}=S_{BMC}\)
Cho tam giác ABC có đường cao AH = 12dm. \(C=65^o,B=70^o\). Tính \(S_{ABC}\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC vuông tại A, đường cao AH. Hạ HE vuông góc với AB, HF vuông góc với AC. Hạ HE vuông góc AN
CM \(\sqrt{S_{BEH}}+\sqrt{S_{CFH}}=\sqrt{S_{ABC}}\)
cho \(\Delta ABC\) nhọn,đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB,AC.
a) Chứng minh AM.AB=AN.AC
b) chứng minh \(AH=\dfrac{BC}{cotB+cotC}\)
c) cho \(BC=MN\sqrt{2}\). Chứng minh \(S_{\Delta AMN}=S_{\Delta BMNC}\)