Cho tam giác ABC nhọn nội tiếp đường tròn (O) , AB<AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại E ; AE cắt (O) tại D (D khác A) . Kẻ đường thẳng d qua E song song với tiếp tuyến tại A của (O), d cắt AB, AC lần lượt tại P, Q. Gọi M là trung điểm của BC. Đường thẳng AM cắt (O) tại N (N khác A) a, CM \(EB^2=ED\cdot EA\) và \(\dfrac{BA}{BD}=\dfrac{CA}{CD}\)
b, CM các đường tròn ngoại tiếp của 3 tam giác ABC, EBP, EQC cùng đi qua 1 điểm
c, Chứng minh E là tâm đường tròn ngoại tiếp tứ giác BCQP
d, CM tứ giác BCND là hình thang cân
a)Có :\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn \(\stackrel\frown{BD}\))
\(\widehat{BED}\):chung
\(\Rightarrow\Delta EBD\sim\Delta EAB\left(gg\right)\)
\(\Rightarrow\dfrac{BE}{ED}=\dfrac{EA}{BE}\)\(\Rightarrow EB^2=ED.EA\)(đpcm)
Xét \(\Delta EDC\) và \(\Delta EAC\), có:
\(\widehat{DEC}\):chung;
\(\widehat{ECD}=\widehat{DAC}\)(cùng chắn \(\stackrel\frown{CD}\))
\(\Rightarrow\Delta EDC\sim\Delta ECA\left(gg\right)\)
\(\Rightarrow\dfrac{ED}{EC}=\dfrac{CD}{AC}\)và EB=EC(t/c 2 tt cắt nhau)
Có \(\Delta EBD\sim\Delta EAB\)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{ED}{EB}\)
\(\Rightarrow\dfrac{CD}{AC}=\dfrac{ED}{EB}=\dfrac{BD}{AB}\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
b)Có ABDC nt( \(A,B,D,C\in\left(O\right)\))(1)
Có xy//d(gt)
\(\Rightarrow\widehat{xAP}=\widehat{BPE}\)(SLT)
Có \(\widehat{ADB}=\widehat{xAP}\)(cùng chắn \(\stackrel\frown{AB}\))
\(\Rightarrow\widehat{BPE}=\widehat{ADB}\)\(\Rightarrow\)BDEP nt\(\Rightarrow B,D,E,P\)thuộc 1 đường tròn(2)
Có xy//d
\(\Rightarrow\widehat{CAy}=\widehat{CQE}\)(SLT)
Có: \(\widehat{CAy}=\widehat{ADC}\)(cùng chắn \(\stackrel\frown{AC}\))
\(\Rightarrow\widehat{CQE}=\widehat{ADC}\Rightarrow\)CDEQ nt\(\Rightarrow\)C,D,E,Q thuộc 1 đường tròn(3).
Từ (1),(2),(3)\(\Rightarrow\)Đường tròn ngoại tiếp (ABDC),(BDEP),(CDEQ) cùng đi qua D.
Mà tâm đường tròn ngoại tiếp (ABDC) cũng là tâm đường tròn ngoại tiếp (ABC).
Mà tâm đường tròn ngoại tiếp (BDEP) cũng là tâm đường tròn ngoại tiếp (BEP).
Mà tâm đường tròn ngoại tiếp (CDEQ) cũng là tâm đường tròn ngoại tiếp (CEQ).
Vậy đường tròn ngoại tiếp (ABC),(BEP).(CEQ) cùng đi qua D.