a: góc ACD=1/2*180=90 độ
góc ECF+góc EBF=180 độ
=>EBFC nội tiếp
b: góc BEF=góc BCF
=>góc BEF=góc BCD=1/2*sđ cung BD
=góc BAD
=góc EBA
=>EF//AB
a: góc ACD=1/2*180=90 độ
góc ECF+góc EBF=180 độ
=>EBFC nội tiếp
b: góc BEF=góc BCF
=>góc BEF=góc BCD=1/2*sđ cung BD
=góc BAD
=góc EBA
=>EF//AB
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Câu 2: Cho phương trình x2 -(m-1)x+(m-2)=0(m là tham số).
a/ Tìm m để phương trình có hai nghiệm trái dấu.
Từ điểm A nằm ngoài (O;R) kẻ hai tiếp tuyến AB và AC (B và C là hai tiếp điểm). Gọi H là trung điểm của BC.
a) Chứng minh O, A, B, C cùng thuộc đường tròn và 3 điểm O, H, A thẳng hàng.
b) Kẻ đường kính CD. AD cắt đường tròn (O)tại điểm thứ hai là E và cắt đường tròn đường kính OA tại I. Chứng minh I là trung điểm của DE.
c) OI cắt BC tại F, Gọi G là giao điểm của OA và FE, OE cắt BC tại M. Chứng minh rằng: GM // DE.
cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh :AD vuông góc BCvà AH.AD=AE.AC
b) Chứng minh : góc EOC = góc EFD
Cho tam giác nhọn ABC có AB < AC. Vẽ đưong tròn tâm O, đường kính
BC cắt AB, AC lần lượt tại E, F. Gọi H là giao điểm của BF và CE.
a) Chứng minh tứ giác AEHF là tứ giác noi tiếp.
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
cho tam giác ABC cân tại A (A<90), hai đường cao BD và CE cắt nhau tại H.
a. Chứng minh bốn điểm A,D,H,E cùng thuộc đường tròn, xác định tâm Ovaf vẽ đường tròn này.
b. Gọi K là giao điểm cảu AO và BC, Chứng minh KD là tiếp tuyến của đường tròn (O)