Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
cao lâm

Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM

Nguyễn Lê Phước Thịnh
5 tháng 3 2023 lúc 7:49

1: góc AMB=1/2*sđ cung AB=90 độ

góc EFB+góc EMB=90+90=180 độ

=>EFBM nội tiếp

2: góc AMC=1/2*sđ cung AC

góc AMD=1/2*sđcung AD

mà sđ cung AC=sđ cung AD

nên góc AMC=góc AMD

=>MA là phân giác của góc CMD

Xet ΔACE và ΔAMC có

góc ACE=góc AMC

góc CAE chung

=>ΔACE đồng dạng với ΔAMC

=>AC/AM=AE/AC

=>AC^2=AM*AE


Các câu hỏi tương tự
Chanhh
Xem chi tiết
Kiên Đz
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
Trương Cát Tiên
Xem chi tiết
Kiều Tiên
Xem chi tiết
Trần Như Đức Thiên
Xem chi tiết
Phương Uyên
Xem chi tiết
Etermintrude💫
Xem chi tiết
Trong Ngoquang
Xem chi tiết