1) Cho hinh hanh ABCD, M la diem tuy y. Chon khang dinh dung trong cac khang dinh sau:
A. vecto MA + vecto MB = vecto MC + vecto MD B. vecto MB + vecto MC = vecto MD + vecto Ma
C. vecto MC + vecto CB = vecto MD + vecto DA D. vecto MA + vecto MC = vecto MB + vecto MD
Cho tam giác ABC, M là trung điểm cạnh BC, N là điểm trên cạnh AC sao cho AN=3NC. Trên tia đối của tia BA, lấy điểm P sao cho BA=2BP. a) Chứng minh vecto AB= 2/3 vecto AP, vecto AC=4/3 vecto AN. b) Chứng minh vecto AM=1/3 vecto AP+ 2/3 vecto AN. c) Gọi I, J là điểm thỏa mãn 3 vecto IA+4vecto IB= vecto 0, vecto CJ=1/2 vecto BC d) Q là điểm nằm trên cạnh BC. Chứng minh |BC|.AQ= |QC|.AB+|QB|.AC Giúp mình với ạ mà câu d) chứng minh đó là độ dài vecto nha tại mình kh biết ghi vecto trên đầu sao sợ mọi người nhầm
cho hình bình hành ABCD, gọi M, N lần lượt là trung điểm BC và AD. gọi I là giao điểm của AM và BN, K là giao điểm của DM và CN
a) chứng minh vecto AM =vecto NC
b) chứng mình vecto Dk = vecto NI
Cho tam giác ABC , hãy xác định các vecto. tổng sau đây
AB-> +CB -> ; AC->+BC->
Cho hai điểm cố định A, B. Tìm tập hợp các điểm M thỏa mãn [vecto ma+mb]=[vecto ma-mb]
A. Tập hợp các điểm M là đường tròn đường kính AB
B. Tập hợp các điểm M là đường trung trực của AB.
C. Tập hợp các điểm M là nửa đường tròn đường kính AB
D. Tập hợp các điểm M là đường tròn bán kính AB
Giúp em với ạ
cho tứ giác ABCD gọi MNPQ là trung điểm của AB, BC , CD , DA chứng minh rằng vecto NP = vecto NQ , vecto PQ = vecto MN
a) Cho tam giác ABC. Chứng minh rằng:.b) Cho tam giác , trên lấy điểm sao cho . Gọi là điểm thoả mãn hệ thức: . Chứng minh ba điểm , , thẳng hàng.
1.Vecto đối của vecto 0 là vecto nào? Vecto đối của vecto -a là vecto nào?
2. Hãy tính số các vecto (khác 0) mà các điểm đầu và điểm cuối được lấy từ các điểm phân biệt đã cho trong 2 trường hợp sao: a) Hai điểm. b) Ba điểm. c) Bốn điểm
3. Cho 2 vecto a và b sao cho a+b=0. a) dựng OA=a, OB=b. Chứng minh O là trung điểm AB. b) Dựng OA=a, AB=b. Chứng ninh O trùng B
cho tam giác ABC tìm tập hợp điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)