Cho tam giác ABC cân tại đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD= CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng.
a) Cho tam giác ABC. Chứng minh rằng: . b) Cho tam giác ABC. Tìm điểm M thỏa mãn hệ thức:
Cho tam giác ABC cân tại A trên tia đối của tia BC lấy điểm M trên tia đối của tia BC lấy điểm N sao cho BM=CN
A)chung minh tam giác AMN là tam giác cân
B) kẻ BH vuông góc với AM (H thuộc AM ) CK vuông góc AN (K thuộc AN )chung minh BH bằng CK
C gọi O là giao điểm của BH và CK chung minh tam giac OBC cân
D gọi D là trung điểm của BC chứngminh ADI thẳng hàng
Các bạn vẻ hình và làm giúp minh nhé
Bài 2. Tính độ dài hai cạnh của một hình chữ nhật, biết tỉ số giữa các cạnh của nó bằng 0,6 và chu vi = 32cm. Bài 3. Cho hàm số y = f(x) = x2 – 1 . Tìm x sao cho f(x) = 1 . Bài 4. Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. a) Cho biết góc ACB = 400. Tính số đo góc ABD. b) Trên cạnh BC lấy điểm E sao cho BE = BA. Chứng minh ΔBAD = ΔBED và DE ⊥ BC c) Gọi F là giao điểm của BA và ED. Chứng minh rằng: ΔABC = ΔEBF d) Vẽ CK vuông góc với BD tại K. Chứng minh rằng ba điểm K, F, C thẳng hàng
Cho tam giác ABC vuông tại A và tia phân giác BD. Kẻ DE vuông góc BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) AB = BE
b) Tam giác CDF cân
c) AE // CF
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao
choBD BA . Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng:
a) Điểm H nằm giữa B; D.
Page 15
b) BE là đường trung trực của đoạn AD.
c) Tia AD là tia phân giác của góc HAC.
d) HD DC
Cho tam giác ABC và điểm K thuộc cạnh BC sao cho KB=2KC, L là hình chiếu của B trên AK, F là trung điểm của BC, biết rằng KAB=2KAC. Chứng minh rằng FL vuông góc với AC.
Cho tam giác ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC . Hai đoạn thẳng BN và CM cắt nhau tại G .
a) Chứng minh : AM = AN
b) Trên tia đối của tia NB lấy điểm K sao cho NK = NG . Chứng minh : AG song song CK
c) BG = GK
d) Chứng minh AG là đường trung trực MN