Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoàng tử họ phạm

Cho tam giác ABC cân tại đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD= CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng.

Nguyễn Tấn Dũng
4 tháng 6 2017 lúc 21:10

A B C D E I F Từ D vẽ đường thẳng song song với AC cắt BC tại F

Ta có: \(\bigtriangleup\)ABC cân tại A \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}\) (1)

DF//AC \(\Rightarrow\) DF//EC \(\Rightarrow\) \(\begin{cases} \widehat{ACB}=\widehat{DFB}(2)\\ \widehat{FDI}=\widehat{IEC}(3) \end{cases}\)

Từ (1);(2) \(\Rightarrow\) \(\widehat{ABC}=\widehat{DFB}\)

\(\Rightarrow\) \(\bigtriangleup\)DFB cân tại D

\(\Rightarrow\) BD=DF.

Mà BD=CE(gt) \(\Rightarrow\) CE=DF.

Xét \(\bigtriangleup\)FDI và \(\bigtriangleup\)CEI có:

DF=CE(cmt)

\(\widehat{FDI}=\widehat{IEC}\) (cmt)

DI=IE(I là trung điểm DE)

\(\Rightarrow\) \(\bigtriangleup\)FDI = \(\bigtriangleup\)CEI (c-g-c)

\(\Rightarrow\) \(\widehat{FID}=\widehat{EIC}\)

Ta có: \(\widehat{DIC}+\widehat{CIE}\) = 180o

\(\widehat{FID}=\widehat{EIC}\) (cmt)

\(\Rightarrow\) \(\widehat{DIC}+\widehat{DIF}\) = 180o

\(\Rightarrow\) \(\widehat{FIC}=180^{0}\)

Hay \(\widehat{BIC}=180^{0}\)

\(\Rightarrow\) 3 điểm B,I,C thẳng hàng (đpcm)

Trịnh Thành Công
9 tháng 5 2016 lúc 19:54

Kẻ DH song song với AC (H thuộc BC)

Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.

Xét 2 tam giác DHI và tam giác ECI

Ta có: 

Góc HDI = góc IEC ( vị trí so le trong của DH và AC)

DH = CE ( cùng bằng DB)

DI = IE (gt)

=> 2 tam giác bằng nhau c.g.c 

=> Góc DIB = Góc EIC 

mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.

(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt )

Đặng Đức Duy
1 tháng 9 lúc 8:00

E


Các câu hỏi tương tự
Hải Đăng
Xem chi tiết
phamquocviet
Xem chi tiết
Bìnk Vũ
Xem chi tiết
Phạm Ngọc Trâm Anh
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Song Joong Ki
Xem chi tiết
gin đẹp trai
Xem chi tiết
wendy phạm
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết