Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Ngọc Trâm Anh

Bài 1: Cho △ABC có M là trung điểm của BC, I là trung điểm của AM. CI cắt AB tại D. Gọi E là trung điểm của BD. Chứng minh rằng:

a) ME=\(\dfrac{1}{2}\)CD

b) AD=\(\dfrac{1}{2}\)BD

c) ID=\(\dfrac{1}{4}\)CD

Bài 2: Cho △ABC cân tại A có I là trung điểm của BC. Lấy D∈AB. Trên tia DI lấy E sao cho I là trung điểm của DE. Chứng minh rằng:

a) BD=CE

b) CB là tia phân giác góc ACE

Bài 3: △ABC vuông tại A. Trên nửa mặt phẳng bờ AC không chứa B kẻ Cx sao cho CA là tia phân giasc của góc BCx. Từ A kẻ AE\(\perp\)Cx. Từ B kẻ BD\(\perp\)AE. Gọi AH là đường cao của △ABC. Chứng minh rằng:

a) △AHC =△AEC

b) A là trung điểm của DE

c)△DHE là tam giác vuông

Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 14:59

 

Bài 1: 

a: Xét ΔBDC có BM/BC=BE/BD

nên ME//DC và ME/DC=1/2

b: Xét ΔAEM có

I là trung điểm của AM

ID//EM

Do đó: D là trung điểm của AE

=>AD=DE=EB

=>AD=1/2DB

c: ID=1/2EM

=1/2*1/2*DC

=1/4*DC

Bài 2:

a: Xét tứ giác BDCE có

I là trung điểm chung của BC và DE

Do đo: BDCE là hình bình hành

=>BD//CE và BD=CE
b: BD//CE
nên góc ECB=góc DBC

=>góc ECB=góc ACB

=>CB là phân giác của góc ACE


Các câu hỏi tương tự
hoàng tử họ phạm
Xem chi tiết
Hải Đăng
Xem chi tiết
Bìnk Vũ
Xem chi tiết
gin đẹp trai
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
phamquocviet
Xem chi tiết
wendy phạm
Xem chi tiết
Song Joong Ki
Xem chi tiết
đinh thi hong tham
Xem chi tiết