Cho đường tròn (O;R) đươngg kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF
Cho hàm số y = x^2 + 3x có đồ thị (P). Gọi S là tập hợp các giá trị của tham số m để đường thẳng d : y = x + m^2 cắt đồ thị (P) tại hai điểm phân biệt A,B sao cho trung điểm I của đoạn AB nằm trên đường thẳng d': y= 2x+3. Tổng bình phương các phần tử của S là
cho tam giác ABC tìm tập hợp điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
$\text{ Cho hai tập hợp M = [ 2m-1;2m+5] và N = [ m+1;m+7] }$
$\text{ ( Với m là tham số thực )}$
$\text{ Hỏi : Tổng }$ tất cả các giá trị của $m$ để hợp của 2 tập hợp $M$ và $N$ là $1$ đoạn có độ dài bằng $10$ là ?
trong hệ trục tọa độ Oxy, cho 2 điểm A(0, 1) và B(3, 4). Điểm M (a, b) thuộc đường thẳng (d) x-2y-2=0 thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất, Khi đó a+b bằng
1.Vecto đối của vecto 0 là vecto nào? Vecto đối của vecto -a là vecto nào?
2. Hãy tính số các vecto (khác 0) mà các điểm đầu và điểm cuối được lấy từ các điểm phân biệt đã cho trong 2 trường hợp sao: a) Hai điểm. b) Ba điểm. c) Bốn điểm
3. Cho 2 vecto a và b sao cho a+b=0. a) dựng OA=a, OB=b. Chứng minh O là trung điểm AB. b) Dựng OA=a, AB=b. Chứng ninh O trùng B
Cho hai tập hợp A = [m + 1; m + 3] và B = (−∞; −1). Tìm tất cả các giá trị của m để
A ⊂ B.
A. m < 4.
B. m > 4.
C. m ≥ −4.
D. m < −4.
cho tam giác ABC nội tiếp đường tròn (O,R) . gọi M là điểm di động trên đường tròn . xác định vị trí của M để P : MA +MB+MC/ nhỏ nhất