Cho tam giác ABC vuông tại A,đường cao AH.Gọi D là TĐ AC.Lấy E đx H qua D
a)Cm:AHCE là hcn
b)Từ A kẻ đường thẳng song song HE cắt BC tại I.Cm:AIHE là hbh
c)trên tia đối của tia HA lấy K,sao cho AH=HK.Cm;AIKC là hình thoi
d)Cho AB=6cm,AC=8cm.Tính diện tích AIKCE
Cho tâm giác ABC vuông tại Á có AB=12cm, BC=20cm. Gọi M, N lần luợt là trung điểm của hai cạnh AC, BC. Trên tia đối của tia MB lấy điểm D sao cho M là trung điểm của cạnh BD. Trên tia đối của tia CD lấy điểm E sao cho CE=CD
a) tính độ dài đoạn thẳng MN
b) Tính diện tích tam giác ABC
c) chứng minh rằng tứ giác ABCD là hbh
d) chứng minh rằng tứ giác ABEC là hcn
Cho tam giác ABD vuông tại A có AB <AD . M là trung điểm của BD . GọiC là điểm đối xứng với A qua M
a, CM tứ giác ABCD là hình chữ nhật
b, Trên tia đối của tia DA lấy E sao cho DE=DA. Gọi I là trung điểm của CD CM: IB=IE
c, gọi AH là đường cao của tam giác ABD và K là điểm đối xứng với A qua H. CM: tứ giác BDCK là hình thang cân
d , chứng minh rằng k,C,E thẳng hàng
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC . Tia phân giác của ABC) của cạnh AC tại D kẻ DE .!. BC ( E € BC ) a, Tính độ dài AB nếu cho AC = 12cm ; BC = 15cm b, chứng minh ∆ ADB = ∆EDB , từ đó suy ra DB là tia phân giác của ADE) c, Vẽ EF // BD ( F thuộc DC ) . Chứng minh BDE) = MED và tam giác DEF cân d, chứng minh BD là đường trung trực của AE
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D (D khác A và B) và trên tia đối của tia CA lấy điểm E sao cho BD = CE. Từ D kẻ DG song song với BC \(\left(G\in AC\right)\)
a/Tứ giác BDGC là hình gì? Vì sao?
b/Đoạn thẳng DE cắt BC tại điểm I. Chứng tỏ rằng ID = IE
1. Cho tam giác ABC có diện tích bằng 24cm2, đường cao AH bằng 6 cm. Tính BC
2. Cho tam giác ABC vuông cân tại A (AD là phân giác CD thuộc BC), E là điểm đối xứng với D qua AC. Tứ giác AECD là hình gì?
3. Cho tam giác nhọn ABC, các đường cao BH và CK. Gọi E và F lần lượt là hình chiếu của B và C trên HK. Chứng minh rằng EK = HF
tam giác ABC vuông cân tại A, AB=a ko đổi . Lấy D thuộc AB;E thuộc AC sao cho AD=CE. TÌm SBCED min