§4. Hệ trục tọa độ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC đều cạnh a. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\), trong đó O là trung điểm của cạnh BC, \(\overrightarrow{i}\)cùng hướng với \(\overrightarrow{OC}\), \(\overrightarrow{j}\) cùng hướng với \(\overrightarrow{OA}\) :

a) Tính tọa độ của các đỉnh của tam giác ABC

b) Tìm tọa độ trung điểm E của AC

c) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Bùi Thị Vân
16 tháng 5 2017 lúc 11:00

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) C = (-4.34, -5.84) C = (-4.34, -5.84) C = (-4.34, -5.84) D = (11.02, -5.84) D = (11.02, -5.84) D = (11.02, -5.84)
\(OB=OC=\dfrac{a}{2}\).
\(OA=\sqrt{BC^2-OC^2}=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{3}}{2}\).
Vậy \(C\left(\dfrac{a}{2};0\right);B\left(-\dfrac{a}{2};0\right);A\left(0;\dfrac{a\sqrt{3}}{2}\right)\).
b) \(x_E=\dfrac{x_A+x_C}{2}=\dfrac{a}{4}\); \(y_E=\dfrac{y_A+y_C}{2}=\dfrac{a\sqrt{3}}{4}\).
Vậy \(E\left(\dfrac{a}{4};\dfrac{a\sqrt{3}}{4}\right)\).
c)Do tam giác ABC đều cạnh a nên tâm đường tròn ngoại tiếp chính là trọng tâm tam giác ABC.
\(x_I=\dfrac{x_A+x_B+x_C}{3}=0\);
\(y_I=\dfrac{x_A+y_B+y_C}{3}=\dfrac{a\sqrt{3}}{6}\).
Vậy \(I\left(0;\dfrac{a\sqrt{3}}{6}\right)\).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
yona
Xem chi tiết
Thanh Thanh
Xem chi tiết
trần thị linh
Xem chi tiết
camcon
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết