a) \(\overrightarrow{a}\left(2;3\right)\);
b) \(\overrightarrow{b}\left(\dfrac{1}{3};-5\right)\);
c) \(\overrightarrow{c}\left(3;0\right)\);
d) \(\overrightarrow{d}\left(0;-2\right)\).
a) \(\overrightarrow{a}\left(2;3\right)\);
b) \(\overrightarrow{b}\left(\dfrac{1}{3};-5\right)\);
c) \(\overrightarrow{c}\left(3;0\right)\);
d) \(\overrightarrow{d}\left(0;-2\right)\).
Tìm tọa độ của hai vectơ sau :
a) \(\overrightarrow{a}=2\overrightarrow{i}\)
b) \(\overrightarrow{b}=-3\overrightarrow{j}\)
c) \(\overrightarrow{c}=3\overrightarrow{i}+4\overrightarrow{j}\)
d) \(\overrightarrow{d}=0,2\overrightarrow{i}+\sqrt{3}\overrightarrow{j}\)
Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{a}=2\overrightarrow{i}\) , \(\overrightarrow{b}=-3\overrightarrow{j}\), \(\overrightarrow{c}=3\overrightarrow{i}-4\overrightarrow{j}\)
Phân tích vecto c theo hai vecto a và vecto b
Trong mặt phẳng tọa độ Oxy cho các vectơ \(\overrightarrow{a}\) = (2 , 5) , \(\overrightarrow{b}\)= (-1,4) , \(\overrightarrow{c}\)= (3,0)
a, tìm toạ độ của các vecto sau \(\overrightarrow{a}\) + \(\overrightarrow{b}\) ,\(\overrightarrow{b}\) - \(\overrightarrow{c}\) , 5\(\overrightarrow{a}\)
b, hãy biểu diễn vectơ \(\overrightarrow{a}\) theo hai vectơ \(\overrightarrow{b}\) ,\(\overrightarrow{c}\)
c, cho x = ( 3m ; 2m +1 ) , tìm số m sao cho \(\overrightarrow{\text{x}}\) cùng phương vectơ \(\overrightarrow{a}\) + 2\(\overrightarrow{c}\)
cho hình bình hành ABCD có AD=4 và chiều cao tường ứng với cạnh AD bằng 3, \(\widehat{BAD}=60^0\) . Chọn hệ trục tọa độ \(\left(A;\overrightarrow{i};\overrightarrow{j}\right)\) sao cho \(\overrightarrow{i}\) cùng hướng với \(\overrightarrow{AD}\). Tìm tọa độ các vectơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CD};\overrightarrow{AC}\).
Cho \(\overrightarrow{a}=\left(1;-2\right);\overrightarrow{b}=\left(0;3\right)\)
Tìm tọa độ của các vectơ : \(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b};\overrightarrow{y}=\overrightarrow{a}-\overrightarrow{b};\overrightarrow{z}=3\overrightarrow{a}-4\overrightarrow{b}\) ?
Viết vectơ \(\overrightarrow{u}\) dưới dạng \(\overrightarrow{u}=x\overrightarrow{i}+y\overrightarrow{j}\) khi biết tọa độ của \(\overrightarrow{u}\) là :
\(\left(2;-3\right);\left(-1;4\right);\left(2;0\right);\left(0;-1\right);\left(0;0\right)\)
Cho lục giác đều ABCDEF. Chọ hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\), trong đó O là tâm của lục giác đều, hai vectơ \(\overrightarrow{i}\) và \(\overrightarrow{OD}\) cùng hướng, \(\overrightarrow{j}\) và \(\overrightarrow{EC}\) cùng hướng. Tính tọa độ các đỉnh của lục giác biết độ dài cạnh của lục giác là 6 ?
Cho tam giác ABC đều cạnh a. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\), trong đó O là trung điểm của cạnh BC, \(\overrightarrow{i}\)cùng hướng với \(\overrightarrow{OC}\), \(\overrightarrow{j}\) cùng hướng với \(\overrightarrow{OA}\) :
a) Tính tọa độ của các đỉnh của tam giác ABC
b) Tìm tọa độ trung điểm E của AC
c) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC
Cho \(\overrightarrow{a}\)=3i-4\(\overrightarrow{j}\)
\(\overrightarrow{b}\)=i-\(\overrightarrow{j}\) . Tìm phát biểu sai
A. |\(\overrightarrow{a}\)| =5
C. \(\overrightarrow{a}\) .\(\overrightarrow{b}\) =(2;3)
B.| \(\overrightarrow{b}\)| =0
D. \(\overrightarrow{b}\)=\(\sqrt{2}\)
Giúp mình với nhé ! Mình đang cần gấp lắm