Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC có \(\widehat{B}=\widehat{C}\). Tia phân giác của góc A cắt BC tại D. Chứng minh rằng :

a) \(\Delta ADB=\Delta ADC\)

b) AB = AC

Quang Duy
20 tháng 4 2017 lúc 15:28

a) ∆ADB và ∆ ACD có:

\(\widehat{B}\) =\(\widehat{C}\)(gt) (1)

\(\widehat{A1}\)=\(\widehat{A2}\)(AD là tia phân giác)

Nên \(\widehat{D1}\)=\(\widehat{D2}\)

AD cạnh chung.

Do đó ∆ADB=∆ADC(g.c.g)

b) ∆ADB=∆ADC(câu a)

Suy ra AB=AC .



Nguyễn Anh Tuấn
8 tháng 1 2018 lúc 20:22

a Xét \(\Delta ADB\)\(\Delta ADC\) có :

AD : cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (gt)

Ta có : \(\widehat{BDA}+\widehat{DAB}+\widehat{ABD}=\widehat{CDA}+\widehat{DAC}+\widehat{ACD}\)

\(\Rightarrow\widehat{BDA}=\widehat{CDA}\)

\(\Rightarrow\Delta ADB=\Delta ADC\) (g . c . g)

b Vì \(\Delta ADB=\Delta ADC\)

\(\Rightarrow\) AB = AC

hiu


Các câu hỏi tương tự
7/8 Phạm Tiến Mạnh
Xem chi tiết
hồng phạm
Xem chi tiết
Đào Ngọc Linh
Xem chi tiết
Đào Chí Thành
Xem chi tiết
7/8 Phạm Tiến Mạnh
Xem chi tiết
anh nguyen ngoc minh
Xem chi tiết
I forgot someone in my h...
Xem chi tiết
Tống Ni
Xem chi tiết
Châu Phan
Xem chi tiết