a: Ta cóΔAMB=ΔAMC
nên MB=MC
hay M là trung điểm của BC
b: Ta có: ΔAMB=ΔAMC
nên \(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của góc BAC
c: Ta có: ΔAMB=ΔAMC
nên AB=AC
mà MB=MC
nên AM là đường trung trực của BC
=>AM\(\perp\)BC
a: Ta cóΔAMB=ΔAMC
nên MB=MC
hay M là trung điểm của BC
b: Ta có: ΔAMB=ΔAMC
nên \(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của góc BAC
c: Ta có: ΔAMB=ΔAMC
nên AB=AC
mà MB=MC
nên AM là đường trung trực của BC
=>AM\(\perp\)BC
1. Cho \(\Delta ABC\) có AB = AC, M là trung điểm BC. Chứng minh :
a) \(\Delta AMB\) = \(\Delta AMC\)
b) AM \(\perp\) BC
2. Tam giác có 3 cạnh tỉ lệ 2;3;7. Biết chu vi là 24m. Tính độ dài.
Cho tam giác ABC và điểm M thuộc cạnh BC thỏa mãn tam giác AMB=tam giác AMC. Chứng minh rằng:
a)M là trung điểm của BC
b)Tia AM là phân giác của góc BAC và AM Vuông góc BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của cạnh BC
a)Chứng minh △AMB = △AMC
b)Gọi I là trung điểm đoạn thẳng AM. Trên tia CI lấy điểm N sao cho
CN = 2.CI . Chứng minh AN // BC
c) Trên tia BI lấy điểm K sao cho BK = 2.BI. Chứng minh N,A,K thẳng hàng
Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh tam giác amb=tam gaics amc chứng minh am là tia phân giác của góc bac đương thẳng đi qua b vuông góc vói ba cắt đường thẳng am tại i chúng minh ci vuông góc với ca
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho ΔABC cân tại A, gọi M là trung điểm của cạnh BC
a. Chứng minh: ΔABM= ΔACM; Tính số đo góc AMB và góc AMC suy ra AM ⊥ BC
b. Chứng minh AI là phân giác của góc A
Cho tam giác ABC cân tại A, AM là phân giác góc A (M thuộc BC)
a/ chứng minh MB = MC
b/ Gọi I là trung điểm AC. Trên tia đối của tia đối của tia IB, lấy D sao cho BI = ID. Chứng minh AB // CD
c/ Gọi K là giao điểm của AM và CD. Chứng minh KC + IB + CD > AM + IA
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.