Gọi G là trọng tâm tam giác, các trung tuyến \(AM=m_a\) ; \(BN=m_b\)
Đặt cạnh \(BC=a;AC=b;AB=c\)
\(AG^2=\frac{4}{9}m_a^2=\frac{1}{9}\left(2b^2+2c^2-a^2\right)\)
\(BG^2=\frac{4}{9}m_b^2=\frac{1}{9}\left(2a^2+2c^2-b^2\right)\)
Mặt khác theo Pitago: \(AG^2+BG^2=AB^2\)
\(\Leftrightarrow\frac{1}{9}\left(4c^2+a^2+b^2\right)=c^2\)
\(\Leftrightarrow a^2+b^2=5c^2\)
\(\Leftrightarrow5c^2\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow\frac{\left(a+b\right)^2}{c^2}\le10\)
\(\Leftrightarrow\frac{a+b}{c}\le\sqrt{10}\)