cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền thành 2 đoạn BH = 4 cm, HC = 6 cm. gọi M là trung điểm của AC.
a, Tính , AH, AD, AC. Tính số đo góc AMB.
b, kẻ AH\(\perp\)BM K thuộc BM chứng minh tam giác BKC\(\sim\) tam giác BHM
Cho tam giác ABC vuông tại A,vẽ đường cao AH:
a)Chứng minh tam giác ABC~tam giác HBA .Từ đó suy ra AB\(^2\)=BH.BC
b)Chứng minh rằng tam giác HBA~tam giác HCA.Từ đó suy ra AH\(^2\)=BH.CH
c)Vẽ HD vuông tại AC tại D.Đường trung tuyến CM của tam giác ABC cắt HD tại N
Chứng Minh: \(\frac{HN}{BM}=\frac{CN}{CM}\) và HN=HD
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứng minh rằng tam giác ABC cân
Cho đường tròn (O; R) có dây BC cố định không đi qua tâm. Trên cung lớn BC lấy điểm A sao cho tam giác ABC nhọn. Đường cao BM và CN của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ANHM nội tiếp
b) Chứng minh rằng : BN.BA + CM. CA = BC2
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Bài 1 \(\frac{x^2-x+1}{x}\) biết x\(^2\)-4x+1 =0
Bài 2 Cho tam giác ABC vuông tại A , đường cao AH=4 , cạnh huyền BC=10 .Tính tỉ số \(\frac{AC}{AB}\)
cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Cho tam giác ABC có 3 góc nhọn và các trung tuyến BM và CN vuông góc với nhau. Chứng minh: \(cotC+cotB\ge\dfrac{2}{3}\)
tam giác abc nội tiếp (o,r) các đường cao bm,cn cắt (o) tại p,q
a,chứng minh tứ giác bcmn nội tiếp,
b;mn//pq
c,oa vg góc với mn