a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )
Cho tam giác ABC có AB=AC , gọi M là trung điểm của cạnh BC
a)Chứng minh tam giác ABM và tam giác ACM bằng nhau
b)Chứng minh AM vuông góc với BC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho ΔABC có M là trung điểm của BC , AM vuông góc với BC . Từ M kẻ Mt // AC , từ B kể đường vuông góc với BC cắt Mt tại N .
a, Chứng minh AM là phân giác của góc BAC ,
b, Chứng minh ΔAMB = ΔNBM,
c, MN cắt AB tại I . Chứng minh I là trung điểm của AB ,
d, Chứng minh AN // BC .
Cho tam giác ABC (AB = AC), M là trung điểm của BC (M ϵ BC) .
a) Chứng minh tam giác ABM = tam giác ACM.
b) Lấy điểm N thuộc đoạn thẳng AM , chứng minh NB = NC.
c) Tia BN cắt AC tại D, tia CN cắt AB tại E. Chứng minh ED // BC.
Lấy điểm H sao cho HB = HC ( H và A nằm trên hai nửa mặt phẳng đối nhau bờ BC). Chứng minh ba điểm A, M, H thẳng hàng.
Cho tam giác ABC có AB= AC, AM là tia phân giác của góc BAC( M thuộc BC).
a) Chứng minh tam giác ABM= tam giác ACM
B) Ching minh: AM vuông góc với BC
Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy D sao cho MA = MD
a,Chứng minh tam giác ABM = tam giác DCM
b, Chứng minh AB//DC
c, Kẻ BE vuông AM (E thuộc AM), CF vuông DM ( F thuộc DM). Chứng minh M là trung điểm EF
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.