a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
BE=CD
Do đó: ΔABE=ΔACD
b: Xét ΔHDE có \(\widehat{HDE}=\widehat{HED}\)
nên ΔHDE cân tại H
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
BE=CD
Do đó: ΔABE=ΔACD
b: Xét ΔHDE có \(\widehat{HDE}=\widehat{HED}\)
nên ΔHDE cân tại H
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
cho tam giác ABC, có AB = AC, kẻ bE vuông góc với AC, CD vuông góc với AB. Gọi O là giao điểm của BE và CD. CMR : a) tam giác ABC = tam giác AEB, b) AO là phân giác của BAC
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
Bài 11: Cho △ABC cân tại A . Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ) . Kẻ tia DI ⊥ AB , kẻ tia EK ⊥ AC , DI cắt EK tại H
a,Cmr : △ABE = △ACD
b,Cmr : HD = HE
c,Gọi O là giao điểm của CI và BK . △OED là tam giác gì ? Chứng minh
d, Cmr : AO là tia phân giác của góc BAC
e, A,O,H thẳng hàng
Cho ΔABC cân tại A. Trên BC lấy D và E sao cho BD = CE (D và E nằm ngoài tam giác). Kẻ tia DI ⊥ AB, kẻ tia EK ⊥ AC, DI cắt EK tại H.
a) CMR: ΔABE = ΔACD
b) CMR: HD = HE
c) Gọi O là giao điểm của CI và BK; ΔOED là tam giác gì?
d) CMR: AO là tia phân giác của góc BAC?
e) A, O, H thẳng hàng
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2