a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
AF=EC(gt)
DA=DE(cmt)
Do đó: ΔADF=ΔEDC(hai cạnh góc vuông)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(Cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔADF=ΔEDC(cmt)
nên \(\widehat{ADF}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADE}+\widehat{ADF}=180^0\)
hay F,D,E thẳng hàng(Đpcm)
c)Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(ΔABD=ΔEBD)
và AF=EC(cmt)
nên BF=BC
Ta có: BF=BC(cmt)
nên B nằm trên đường trung trực của FC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DF=DC(cmt)
nên D nằm trên đường trung trực của FC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của FC
hay BD\(\perp\)CF(Đpcm)