Bài 11: Cho △ABC cân tại A . Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ) . Kẻ tia DI ⊥ AB , kẻ tia EK ⊥ AC , DI cắt EK tại H
a,Cmr : △ABE = △ACD
b,Cmr : HD = HE
c,Gọi O là giao điểm của CI và BK . △OED là tam giác gì ? Chứng minh
d, Cmr : AO là tia phân giác của góc BAC
e, A,O,H thẳng hàng
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
cho tam giác abc cân tại a trên bc lấy d và e sao cho bd = ce kẻ tia dx vuông góc ab kẻ tia ey vuông góc ac, dx cắt ey tại h
a) cmr tam giác abe = tam giác acd
b) cmr hd = he
c) gọi o là giao điểm của cd và be; tam giác oed là tam giác gì
d) cmr ao là tia phân giác của góc bac
e) a, o, h thẳng hàng
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác nhon PQF (PQ<QF).Gọi d là trung điểm của PF.Trên tia đối của DQ lấy điểm E sao cho DQ=DE
a)CMR tam giác QPD = tam giác EFD
b)Vẽ PM vuống góc với QD tại M , FN vuông góc với DE TẠI N .CMR PM=FN VÀ PM //FN
c)Kẻ QH vuông góc với PD tại H , EK vuống góc với DF tại K.QH cát PM TẠI O . EK CẮT FN TẠI I.CMR O D I THẲNG HÀNG