Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân Trịnh

Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên tia đối BC lấy D, trên tia đối CB lấy E, sao cho BD=C

a) Chứng minh: tam giác ABM = tam giác ACM

b) Chứng minh: tam giác ABD = tam giác ACE. Từ đó suy ra AM là phân giác của góc DAE

c) Kẻ BK vuông góc AD tại K. Trên tia đối của AM lấy N sao cho BH=AE. Trên tia đối của AM lấy N sao cho AN=CE. Chứng minh; góc MAD = góc MBH

d) Chứng minh: DN vuông góc DH

Lê Vương Kim Anh
11 tháng 7 2017 lúc 10:01

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AM (chung)

AB = AC (\(\Delta ABC\) cân tại A)

BM = MC (B là trung điểm cạnh BC)

Do đó: \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)

b) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ABD}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)\(\Delta ACE\) có:

BD = CE (gt)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

AB = AC (\(\Delta ABC\)cân tại A)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> AD = AE (hai cạnh tương ứng)

=> \(\Delta ABC\) cân tại A

Vì BM = CM; DB = CE

mà DB + BM = DM

CM + CE = ME

=> DM = ME

=> AM là đường trung tuyến \(\Delta ADE\)

\(\Delta ADE\) cân tại A

=> AM là đường phân giác \(\Delta ADE\)

=> AM là tia phân giác \(\widehat{DAE}\)

Lê Vương Kim Anh
11 tháng 7 2017 lúc 10:01

p xem lại một số chỗ nhé

vài chỗ bị sai đề rr


Các câu hỏi tương tự
Tớ cuồng xô
Xem chi tiết
Hà Thu Nguyễn
Xem chi tiết
Hà Hương Linh
Xem chi tiết
Nguyễn Thanh Vân
Xem chi tiết
Nguyễn Thị Thu Uyên
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Nguyễn Thị Đào
Xem chi tiết
Phương Thảo
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết