Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)
\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)
hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)
b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\)
\(\Rightarrow MD=ME\) (**)
Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )
\(MD=ME\) ( theo (**) )
\(AM\): cạnh chung
\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )
\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)
Vậy...
Ta có hình vẽ
a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)
Mà \(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)
và \(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)
Ta có: AB = AC (GT) (2)
BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác ABD = tam giác ACE
=> AD = AE (2 cạnh tương ứng) (đpcm)
b/ Xét tam giác AMD và tam giác AME có:
AD = AE (đã chứng minh ở câu a)
AM: cạnh chung
\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME
=> tam giác AMD = tam giác AME (c.c.c)
=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)
=> AM là phân giác góc DAE (đpcm)
Ta có hình vẽ sau:
a) Vì ΔABC cân
=> \(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{ABD}=180^o-\widehat{ABC}\) (kề bù)
\(\widehat{ACE}=180^o-\widehat{ACB}\) (kề bù)
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB = AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (cm trên)
BD = CE (gt)
=> ΔABD = ΔACE (c.g.c)
=> AD = AE (2 cạnh tương ứng) (đpcm)
b) Ta có: BM = CM (gt)
BD = CE (gt)
=> BM + BD = CM + CE
=> MD = ME (*)
Xét ΔAMD và ΔAME có:
AM: Cạnh chung
AD = AE (ý a)
MD = ME (*)
=> ΔAMD = ΔAME (c.c.c)
=> \(\widehat{DAM}=\widehat{EAM}\) ( 2 góc tương ứng)
=> AM là tia phân giác của \(\widehat{DAE}\) (đpcm)