Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Thu Nguyễn

Bài 4 : Cho tam giác ABC cân ( AB = AC ) ; Trên tia đối của tia BC lấy điểm D , trên tí đối của tia CB lấy điểm E sao cho BD = CE

a. Chứng minh : AD = AE

b. Lấy M là trung điểm của BC ; Chứng minh AM là tia phân giác góc DAE

Nguyễn Huy Tú
27 tháng 11 2016 lúc 9:47

A B C D E M 1 2 1 2

Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)

\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)

hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)

b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\)

\(\Rightarrow MD=ME\) (**)

Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )

\(MD=ME\) ( theo (**) )

\(AM\): cạnh chung

\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )

\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)

Vậy...

Trương Hồng Hạnh
27 tháng 11 2016 lúc 9:51

Ta có hình vẽ

A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)

\(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)

\(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

Ta có: AB = AC (GT) (2)

BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác ABD = tam giác ACE

=> AD = AE (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AMD và tam giác AME có:

AD = AE (đã chứng minh ở câu a)

AM: cạnh chung

\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME

=> tam giác AMD = tam giác AME (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)

=> AM là phân giác góc DAE (đpcm)

Aki Tsuki
27 tháng 11 2016 lúc 11:46

Ta có hình vẽ sau:

A D B C E M

a) Vì ΔABC cân

=> \(\widehat{ABC}=\widehat{ACB}\)

=> \(\widehat{ABD}=180^o-\widehat{ABC}\) (kề bù)

\(\widehat{ACE}=180^o-\widehat{ACB}\) (kề bù)

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cm trên)

BD = CE (gt)

=> ΔABD = ΔACE (c.g.c)

=> AD = AE (2 cạnh tương ứng) (đpcm)

b) Ta có: BM = CM (gt)

BD = CE (gt)

=> BM + BD = CM + CE

=> MD = ME (*)

Xét ΔAMD và ΔAME có:

AM: Cạnh chung

AD = AE (ý a)

MD = ME (*)

=> ΔAMD = ΔAME (c.c.c)

=> \(\widehat{DAM}=\widehat{EAM}\) ( 2 góc tương ứng)

=> AM là tia phân giác của \(\widehat{DAE}\) (đpcm)

 


Các câu hỏi tương tự
Tớ cuồng xô
Xem chi tiết
Nguyễn Thanh Vân
Xem chi tiết
Phương Thảo
Xem chi tiết
Hà Hương Linh
Xem chi tiết
Lê Quang Tuấn
Xem chi tiết
Nguyễn Thành Vinh
Xem chi tiết
Nguyễn Ngọc Hồng Huơng
Xem chi tiết
Nguyen Thi Hong
Xem chi tiết
Phương Thảo
Xem chi tiết