Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Mai Nga

Cho tam giác ABC cân tại A. Kẻ đường cáo Ah ( \(H\in BC\))
1) Chứng minh \(\widehat{B}=\widehat{C}\). Ngoài ra chứng minh \(\widehat{B}=\widehat{C}=90^0-\frac{A}{2}\)
2) Chứng minh HB = HC và \(\widehat{BAH}=\widehat{CAH}\)
3) Trên cạnh AB, AC lấy hai điểm M, N sao cho BM = CN. Chứng minh tam giác AMN cân tại A và chứng minh MN // BC

Vũ Minh Tuấn
4 tháng 12 2019 lúc 10:45

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\) (tính chất tam giác cân).

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) (1).

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}\) (2).

Từ (1) và (2) => \(\widehat{B}=\widehat{C}=180^0-\frac{\widehat{A}}{2}.\)

b) Xét 2 \(\Delta\) vuông \(AHB\)\(AHC\) có:

\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông).

=> \(HB=HC\) (2 cạnh tương ứng).

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Ta có:

\(\left\{{}\begin{matrix}AM+BM=AB\\AN+CN=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BM=CN\left(gt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)

=> \(AM=AN.\)

=> \(\Delta AMN\) cân tại A.

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Lạc Băng
Xem chi tiết
Trần Vân
Xem chi tiết
Trần Huỳnh Khả My
Xem chi tiết
Đặng Thị Mai Nga
Xem chi tiết
Công chúa vui vẻ
Xem chi tiết
Lưu Hoàng Bảo Nam
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
Đỗ Thị Mai Anh
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết