Cho tam giác ABC cân tại A. Kẻ đường cáo Ah ( \(H\in BC\))
1) Chứng minh \(\widehat{B}=\widehat{C}\). Ngoài ra chứng minh \(\widehat{B}=\widehat{C}=90^0-\frac{A}{2}\)
2) Chứng minh HB = HC và \(\widehat{BAH}=\widehat{CAH}\)
3) Trên cạnh AB, AC lấy hai điểm M, N sao cho BM = CN. Chứng minh tam giác AMN cân tại A và chứng minh MN // BC
a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\) (tính chất tam giác cân).
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).
=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) (1).
Mà \(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> \(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}\) (2).
Từ (1) và (2) => \(\widehat{B}=\widehat{C}=180^0-\frac{\widehat{A}}{2}.\)
b) Xét 2 \(\Delta\) vuông \(AHB\) và \(AHC\) có:
\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông).
=> \(HB=HC\) (2 cạnh tương ứng).
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).
c) Ta có:
\(\left\{{}\begin{matrix}AM+BM=AB\\AN+CN=AC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}BM=CN\left(gt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)
=> \(AM=AN.\)
=> \(\Delta AMN\) cân tại A.
Chúc bạn học tốt!