+ HE là đường trung bình của ΔBCD
=> HE = 1/2* BD
=> HE = HA => ΔAHE cân tại H
\(\Rightarrow\widehat{AHE}=180^o-2\widehat{HAE}=180^o-\widehat{BAC}\)
+ HE // BD
\(\widehat{CBD}=\widehat{CHE}=90^o-\widehat{AHE}\)
\(=90^o-\left(180^o-\widehat{BAC}\right)=\widehat{BAC}-90^o\)
+ \(\widehat{ACB}=\widehat{ABC}=2\widehat{CBD}=2\widehat{BAC}-180^o\)
+ Xét ΔABC theo định lý tổng 3 góc của 1 Δ ta có :
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow2\left(2\widehat{BAC}-180^o\right)+\widehat{BAC}=180^o\)
\(\Rightarrow5\widehat{BAC}=180^o+360^o=540^o\)
\(\Rightarrow\widehat{BAC}=108^o\)