cho tam giác ABC cân tại A có đường cao AH, phân giác BD, HE//BD biết AH-1/2 BD vậy góc A =...o
cho tam giác ABC vuông ở A, AB=6, AC=8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh IH*DC=IA*AD
c) Chúng minh AB*BI=BD*HB và tam giác AID cân
Cho tam giác ABC vuồn tại A, AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I.
a, Chứng minh \(\Delta\)ABH đồng dạng \(\Delta\)CBA
b, Tính AD, DC
c, AB.BI = BD.HB
d, Tính diện tích tam giác BHI
Cho Tam giác ABC vuông tại A kẻ phân giác BD cắt đường cao AH tại E
a) C/m ABC đồng dạng HBA
b) C/m BE.AD = BD.HE
c) Tính diện tích tam giác AEB biết AB = 15 cm, AC = 20 cm
cho tam giác ABC (A=90 độ),AB=6cm, AC=8cm vẽ đường cao AH đường phân giác BD của góc B cắt AH tại I. (D thuộc AC)
a.cm tam giác HAC đồng dạng với tam giác ABC
b.tính BC và HC
c.cm AB.BI=BD.HB
d.tính tỉ số diện tích của 2 tam giác HAC và HBA
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF
Cho tam giác ABC có góc B, C nhọn, đường phân giác AD. Biết \(AD=AB=\sqrt{5}\), BD=2cm. Tính độ dài DC
Cho tam giác ABC, góc B và góc C nhọn, đường phân giác AD biết AD=AB= căn bậc 2 của 5, BD=2cm. TÍnh DC
Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD
b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân
c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)
d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng