Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
A Lan

Cho \(\sin^2x+\sin^2y=\frac{1}{4}\) . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(S=\tan^2x+\tan^2y\) . Tính 3M + 2m ?

A. \(\frac{13}{3}\) B. \(\frac{11}{2}\) C. \(\frac{7}{3}\) D. \(\frac{9}{2}\)

Nguyễn Việt Lâm
24 tháng 11 2019 lúc 16:38

\(1-cos^2x+1-cos^2y=\frac{1}{4}\Rightarrow cos^2x+cos^2y=\frac{7}{4}\)

\(\Rightarrow\frac{3}{4}\le cos^2x;cos^2y\le1\)

\(S=1+tan^2x+1+tan^2y-2=\frac{1}{cos^2x}+\frac{1}{cos^2y}-2\)

\(=\frac{7}{4cos^2x.cos^2y}-2=\frac{7}{4cos^2x\left(\frac{7}{4}-cos^2x\right)}-2=\frac{7}{-4cos^4x+7cos^2x}-2\)

Đặt \(cos^2x=t\) \(\Rightarrow\frac{3}{4}\le t\le1\)

Xét \(f\left(t\right)=-4t^2+7t\) trên \(\left[\frac{3}{4};1\right]\)

\(-\frac{b}{2a}=\frac{7}{8}\Rightarrow f\left(\frac{7}{8}\right)=\frac{49}{16}\) ; \(f\left(\frac{3}{4}\right)=3\); \(f\left(1\right)=3\)

\(\Rightarrow3\le f\left(t\right)\le\frac{49}{16}\)

\(\Rightarrow\frac{7}{\frac{49}{16}}-2\le S\le\frac{7}{3}-2\Leftrightarrow\frac{2}{7}\le S\le\frac{1}{3}\)

Không có trong đáp án?

Khách vãng lai đã xóa

Các câu hỏi tương tự
nanako
Xem chi tiết
Liên Đinh
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Julian Edward
Xem chi tiết
Hobiee
Xem chi tiết
Nguyen Thi Phung
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết