\(\Delta'=\left(m+1\right)^2-m^2-4m-3=-2m-2\ge0\Rightarrow m\le-1\)
Khi đó theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
\(2\left(x_1+x_2\right)-x_1x_2+7=0\)
\(\Leftrightarrow-4m-4-m^2-4m-3+7=0\)
\(\Leftrightarrow m^2+8m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-8\end{matrix}\right.\)