Cách ngắn ngọn nhất:
\(x^2-2\left(m+1\right)x+4m=0\left(1\right)\)
\(\Leftrightarrow x^2-2x-2mx+4m=0\)
\(\Leftrightarrow x\left(x-2\right)-2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2m\end{matrix}\right.\)
Phương trình (1) có 2 nghiệm là \(x=2;x=2m\). Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:
TH1: \(x_1=2;x_2=2m\).
Có \(2x_1-x_2=-2\Rightarrow2.2-2m=-2\Leftrightarrow m=3\)
TH2: \(x_1=2m;x_2=2\)
Có \(2x_1-x_2=-2\Rightarrow2.\left(2m\right)-2=-2\Leftrightarrow m=0\)
Vậy m=0 hay m=3