Xét :\(\Delta=b^2-4ac\) = \(\left(m+1\right)^2>0\) ∀x
Ta có: \(\left[{}\begin{matrix}x_1=m-1\\x_2=-2\end{matrix}\right.\)
Theo đề bài ta được : 5 - m = 0 => m = 5
Vậy m = 5 .
Xét :\(\Delta=b^2-4ac\) = \(\left(m+1\right)^2>0\) ∀x
Ta có: \(\left[{}\begin{matrix}x_1=m-1\\x_2=-2\end{matrix}\right.\)
Theo đề bài ta được : 5 - m = 0 => m = 5
Vậy m = 5 .
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho phương trình \(x^2-4mx+3m^2-3=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thỏa mãn \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|\)đặt Max
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Cho phương trình: \(x^2-2.\left(m+1\right)x+4m=0\)
Định m để phương trình có hai nghiệm \(x_1;x_2\) thỏa mãn \(2x_1-x_2=-2\)
Cho phương trình \(x^2-\left(m+1\right)x+m=0\left(1\right)\)(với m là tham số)
a.Giải phương trình (1) khi m=-2
b.Tìm giá trị của m để phương trình (1) có nghiệm phân biệt x1,x2 thỏa mãn:
(\(x^2_1-mx_1+x_2+2m\))\(\left(x^2_2-mx_2+x_1+2m\right)=9x_1x_2\)
\(x^2+4x-m+3=0\) . Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn \(\left|x_1-x_2\right|\le1\)
Cho phương trình:\(x^2\)\(-\left(m+1\right)\)\(x\)\(-2=0\) (với m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1\),\(x_2\) sao cho:
\(\left(1-\dfrac{2}{x_1+1}\right)^2\)\(+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)
Cho phương trình x2-2x+m+2=0 ( m là tham số). Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn: \(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Gấp! Mọi người giúp mình nha!!!