Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thu Huyền

cho phương trình x^2-2(m+2)+m^2+4m+3=0 tìm giá trị của m để biểu thức A= x1^2+x2^2 đạt giá trị nhỏ nhất

Nguyễn Huy Tú
19 tháng 7 2021 lúc 9:56

Để phương trình có nghiệm khi \(\Delta>0\)

\(\Delta=\left(2m+4\right)^2-4\left(m^2+4m+3\right)=4m^2+16m+16-4m^2-16m-12\)

\(=4>0\)

Vậy phương trình luôn có 2 nghiệm pb 

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m+3\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m+4\right)^2-2\left(m^2+4m+3\right)\)

\(=4m^2+16m+16-2m^2-8m-6=2m^2+8m+10\)

\(=2\left(m^2+4m+5\right)=2\left(m+2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi m = -2 

 

An Thy
19 tháng 7 2021 lúc 10:04

\(\Delta'=\left(m+2\right)^2-\left(m^2+4m+3\right)=1>0\) 

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+2\right)^2-2\left(m^2+4m+3\right)\)

\(=2m^2+8m+10=2\left(m^2+4m+4\right)+2=2\left(m+2\right)^2+2\ge2\)

\(\Rightarrow\) GTNN của \(x_1^2+x_2^2=2\) khi \(m=-2\)


Các câu hỏi tương tự
Hoàng Nguyệt
Xem chi tiết
gấu béo
Xem chi tiết
Ngọc Huyền
Xem chi tiết
Anh Phạm
Xem chi tiết
ttt đẹt trai
Xem chi tiết
Mai Anh Phạm
Xem chi tiết
Pink Pig
Xem chi tiết
Nguyễn Dino
Xem chi tiết
2moro
Xem chi tiết