Lời giải:
Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:
\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)
Khi đó:
\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:
$y^2+\frac{5}{6}y-\frac{1}{2}=0$
$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)