Giả sử p-1 là số chính phương
Do p là tích của 2016 số nguyên tố đầu tiên
Suy ra:p chia hết 3. Do đó
\(p-1\equiv-1\left(mod3\right)\);\(p+1\equiv1\left(mod3\right)\)
Đặt \(p-1=3k-1;p+1=3k+1\)
Một số chính phương không có dạng \(3k-1;3k+1\)
Mẫu thuẫn với giả thiết ->Đpcm
Đặt \(p-1=3k-1\)
Một số chính phương không có dạng \(3k-1\) (mâu thuẫn với gt)
bn bỏ cái phần từ khoảng trống kia xuống nhé
vd:k=1 thì 3k+1 là số chính phương nên bạn phải thêm là a>4
kí hiệu \(\equiv\) là gì? mk quên mất tên rùi