Lời giải:
\(P=\frac{\cot x}{\cos x}-\frac{\cos x}{\tan x}=\frac{\cot x\tan x-\cos ^2x}{\cos x\tan x}=\frac{1-\cos ^2x}{\cos x.\frac{\sin x}{\cos x}}=\frac{\sin ^2x}{\sin x}=\sin x\)
Đáp án B.
Lời giải:
\(P=\frac{\cot x}{\cos x}-\frac{\cos x}{\tan x}=\frac{\cot x\tan x-\cos ^2x}{\cos x\tan x}=\frac{1-\cos ^2x}{\cos x.\frac{\sin x}{\cos x}}=\frac{\sin ^2x}{\sin x}=\sin x\)
Đáp án B.
Chứng minh:
a) \(tan(\frac\pi4+\frac{x}2).\frac{1+cos(\frac\pi2+x)}{sin(\frac\pi2+x)}=1\)
b) \(tan(\frac\pi4+x)=\frac{1+sin2x}{cos2x}\)
c) \(\frac{cosx}{1-sinx}=cot(\frac\pi4-\frac{x}{2})\)
d) \(tanx.tan3x=\frac{tan^22x-tan^2x}{1-tan^2x.tan^22x}\)
Cho \(\tan\alpha-5\cot\alpha+4=0.\). Tính \(A=\frac{4\sin\alpha+2\cos\alpha}{3\sin\alpha-\cos\alpha}\)
4) Cho △ABC. Đẳng thức nào \(Sai\) ?
\(A.\sin\left(A+B-2C\right)=\sin3C\)
\(B.\cos\dfrac{B+C}{2}=\sin\dfrac{A}{2}\)
\(C.\sin\left(A+B\right)=\sin C\)
\(D.\cos\dfrac{A+B+2C}{2}=\sin\dfrac{C}{2}\)
Giúp vs ạ: Cho tam giác ABC, chứng minh :
Sin A+Sin B+Sin C\(=\)4.Cos\(\dfrac{A}{2}\).Cos\(\dfrac{B}{2}\).Cos\(\dfrac{C}{2}\)
Cảmơn nhiều ạ>
2) Cho △ABC thỏa mãn hệ thức \(b+c=2a\). Mệnh đề nào trong các mệnh đề sau đúng?
\(A.\cos B+\cos C=2\cos A\)
\(B.\sin B+\sin C=2\sin A\)
\(C.\sin B+C=\dfrac{1}{2}\sin A\)
\(D.\sin B+\cos C=2\sin A\)
1) Cho △ABC. Khẳng định nào đúng?
\(A.S_{\Delta ABC}=\dfrac{1}{2}a.b.c\)
\(B.\dfrac{a}{\sin A}=R\)
\(C.\cos B=\dfrac{b^2+c^2-a^2}{2bc}\)
\(D.m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
cho cos2a= \(\dfrac{3}{5}\). tính giá trị sin4a - cos4a
Cho tam giác ABC có b = 7 ,c = 5 và cos A = \(\dfrac{3}{5}\). Tính a , sin A, diện tích S của ABC, R, r, ha
CMR \(cos\dfrac{\pi}{5}-cos\dfrac{2\pi}{5}=\dfrac{1}{2}\)