2) Cho △ABC thỏa mãn hệ thức \(b+c=2a\). Mệnh đề nào trong các mệnh đề sau đúng?
\(A.\cos B+\cos C=2\cos A\)
\(B.\sin B+\sin C=2\sin A\)
\(C.\sin B+C=\dfrac{1}{2}\sin A\)
\(D.\sin B+\cos C=2\sin A\)
4) Cho △ABC. Đẳng thức nào \(Sai\) ?
\(A.\sin\left(A+B-2C\right)=\sin3C\)
\(B.\cos\dfrac{B+C}{2}=\sin\dfrac{A}{2}\)
\(C.\sin\left(A+B\right)=\sin C\)
\(D.\cos\dfrac{A+B+2C}{2}=\sin\dfrac{C}{2}\)
Giúp vs ạ: Cho tam giác ABC, chứng minh :
Sin A+Sin B+Sin C\(=\)4.Cos\(\dfrac{A}{2}\).Cos\(\dfrac{B}{2}\).Cos\(\dfrac{C}{2}\)
Cảmơn nhiều ạ>
cho tam giác ABC thoả mãn
a, \(\dfrac{1+cosB}{1-cosB}\)= \(\dfrac{2a+c}{2a-c}\) CM: tam giác cân
b, tanB.tanC = \(\dfrac{tanA}{sinB.sinC}\) CM: tam giác vuông
c, \(\left\{{}\begin{matrix}\dfrac{1+cosC}{sinC}=\dfrac{2a+b}{\sqrt{4a^2-b^2}}\\a^2\left(b+c-a\right)=b^3+c^3-a^3\end{matrix}\right.\) CM: tam giác đều
Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
3) Hãy ghi đáp án và lời giải cho câu hỏi sau:
Cho △ABC có \(b=7;c=5;\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của △ABC là:
\(A.\dfrac{7\sqrt{2}}{2}\)
\(B.8\)
\(C.8\sqrt{3}\)
\(D.80\sqrt{3}\)
Gọi S là diện tích tam giác ABC.Cmr:
a)\(S=2R^2\sin A\sin B\sin C\)
b)\(c^2=\left(a-b\right)^2+4S\dfrac{1-cosC}{sinC}\)(với a,b,c lần lượt là các cạnh đối với các góc A,B,C)
c)\(S=Rr\left(\sin A+\sin B+\sin C\right)\)(R,r lần lượt là bàn kính đường tròn ngoại tiếp và nội tiếp tam giác ABC)
d)\(S=p\left(p-a\right)\tan\dfrac{A}{2}\)
CM với mọi tam giác ABC, ta có
a, (b2-c2)cos A = a(c.cos C - b.cos B)
b, S = \(\dfrac{1}{2}\)\(\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
cho tam giác ABC các đường cao h\(_a\), h\(_{_{ }b}\), h\(_c\) thoa man he thuc 3h\(_a\) = 2h\(_b\) + h\(_c\) . Tim he thuc giua a, b, c
A.\(\dfrac{3}{a}=\dfrac{2}{b}-\dfrac{1}{c}\) B. \(3a=2b+c\) C.\(3a=2b-c\) D.\(\dfrac{3}{a}=\dfrac{2}{b}+\dfrac{1}{c}\)