4) Cho △ABC. Đẳng thức nào \(Sai\) ?
\(A.\sin\left(A+B-2C\right)=\sin3C\)
\(B.\cos\dfrac{B+C}{2}=\sin\dfrac{A}{2}\)
\(C.\sin\left(A+B\right)=\sin C\)
\(D.\cos\dfrac{A+B+2C}{2}=\sin\dfrac{C}{2}\)
Chứng minh rằng trong tam giác ABC ta có các hệ thức :
a) \(\sin A=\sin B\cos C+\sin C\cos B\)
b) \(h_a=2R\sin B\sin C\)
Giúp vs ạ: Cho tam giác ABC, chứng minh :
Sin A+Sin B+Sin C\(=\)4.Cos\(\dfrac{A}{2}\).Cos\(\dfrac{B}{2}\).Cos\(\dfrac{C}{2}\)
Cảmơn nhiều ạ>
1) Cho △ABC. Khẳng định nào đúng?
\(A.S_{\Delta ABC}=\dfrac{1}{2}a.b.c\)
\(B.\dfrac{a}{\sin A}=R\)
\(C.\cos B=\dfrac{b^2+c^2-a^2}{2bc}\)
\(D.m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B.\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
Cho tam giác ABC có b = 7 ,c = 5 và cos A = \(\dfrac{3}{5}\). Tính a , sin A, diện tích S của ABC, R, r, ha