§3. Các hệ thức lượng giác trong tam giác và giải tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Trần Thị

chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)

Hồng Trinh
18 tháng 5 2016 lúc 11:03

định lý hàm số sin: 
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R 
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
 \(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 90o 
vậy tam giác ABC vuông tại A


Các câu hỏi tương tự
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tùng Phạm
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Hanh Nguyen Thu
Xem chi tiết
Tùng Phạm
Xem chi tiết
hiền cao
Xem chi tiết