2) Cho △ABC thỏa mãn hệ thức \(b+c=2a\). Mệnh đề nào trong các mệnh đề sau đúng?
\(A.\cos B+\cos C=2\cos A\)
\(B.\sin B+\sin C=2\sin A\)
\(C.\sin B+C=\dfrac{1}{2}\sin A\)
\(D.\sin B+\cos C=2\sin A\)
Giúp vs ạ: Cho tam giác ABC, chứng minh :
Sin A+Sin B+Sin C\(=\)4.Cos\(\dfrac{A}{2}\).Cos\(\dfrac{B}{2}\).Cos\(\dfrac{C}{2}\)
Cảmơn nhiều ạ>
1) Cho △ABC. Khẳng định nào đúng?
\(A.S_{\Delta ABC}=\dfrac{1}{2}a.b.c\)
\(B.\dfrac{a}{\sin A}=R\)
\(C.\cos B=\dfrac{b^2+c^2-a^2}{2bc}\)
\(D.m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
Gọi S là diện tích tam giác ABC.Cmr:
a)\(S=2R^2\sin A\sin B\sin C\)
b)\(c^2=\left(a-b\right)^2+4S\dfrac{1-cosC}{sinC}\)(với a,b,c lần lượt là các cạnh đối với các góc A,B,C)
c)\(S=Rr\left(\sin A+\sin B+\sin C\right)\)(R,r lần lượt là bàn kính đường tròn ngoại tiếp và nội tiếp tam giác ABC)
d)\(S=p\left(p-a\right)\tan\dfrac{A}{2}\)
Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
Cho tam giác ABC có b = 7 ,c = 5 và cos A = \(\dfrac{3}{5}\). Tính a , sin A, diện tích S của ABC, R, r, ha
Chứng minh rằng trong tam giác ABC ta có các hệ thức :
a) \(\sin A=\sin B\cos C+\sin C\cos B\)
b) \(h_a=2R\sin B\sin C\)
Cho tam giác ABC có bàn kính đường tròn ngoại tiếp bằng 1 và:
\(\dfrac{\sin A}{m_a}+\dfrac{\sin B}{m_b}+\dfrac{\sin C}{m_c}=\sqrt{3}\)
với \(m_a,m_b,m_c\)là độ dài đường trung tuyến tương ứng kẻ từ A,B,C.CMR:tam giác ABC đều
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B.\sin C}\)