Cho (O) △ABC nội tiếp. Vẽ đường cao AD , BE , CF cắt nhau tại H. Lấy K đối xứng A qua O
1. CMR ABAC = 2RAD => R?
2. CMR góc BAOB = góc HAC; CMR B,F,E,C ϵ đường tròn
AD cắt (O) tại M
CMR BMKC là hình thang cân
3. BE, CF cắt (O) tại IJ
CMR EF//IJ
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
Cho tam giác nhọn ABC nội tiếp (O). các đường cao AD, BE, CF cắt nhau tại H
a)chứng minh DA, EB,FC lần lượt là phân giác của các góc EDF,DEF, EFD
b) kẻ đường kính AM. Cmr BHCM là hình bình hành
c) BE cắt (O) tại K. Cmr K đối xứng H qua AC
Cho tam giác ABC vuông ở A . Vẽ đường tròn đường kính AB cắt cạnh BC tại D . Trên cung AD lấy E . BE kéo dài cắt ÁC ở F. CMR : a) Tứ giác CDEF nt b) Kéo dài DE cắt AC ở K . Tia p/g góc CKD cắt EF,CD ở M,N . Tia p/g góc CBF cắt DE,CF tại P,Q . CM : Tứ giác MPNQ là hình thoi c) Gọi r1 , r2 lần lượt là bán kính đường tròn nội tiếp tam giác ABC , ABD , ACD . CMR : \(r^2=r1^2+r2^2\)
***** ddef cương tết ''.''
Cho tam giác ABC nội tiếp (O) các đường cao AD, BE, CF đồng quy tại H. CÁc tia AD, BE, CF cắt (O) tại các điểmthứ hai tương ứng A' ; B' ;C'
a) CMR AB,BC, CA là trung trực của các đoạn thẳng tương ứng HC' HA' HB'
b) CMR H là tâm đường tròn nội tiếp tam giác DEF
tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max
Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)
1) Chứng minh tam giác AMN can
2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)
3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.
Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)
1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB
2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB
3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất