Cho (O) △ABC nội tiếp. Vẽ đường cao AD , BE , CF cắt nhau tại H. Lấy K đối xứng A qua O
1. CMR ABAC = 2RAD => R?
2. CMR góc BAOB = góc HAC; CMR B,F,E,C ϵ đường tròn
AD vuông góc (O) tại M
CMR BMKC là hình thang cân
3. BE, CF vuông góc (O) tại I
CMR EF//IJ
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác nhọn ABC nội tiếp (O). các đường cao AD, BE, CF cắt nhau tại H
a)chứng minh DA, EB,FC lần lượt là phân giác của các góc EDF,DEF, EFD
b) kẻ đường kính AM. Cmr BHCM là hình bình hành
c) BE cắt (O) tại K. Cmr K đối xứng H qua AC
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
Cho tam giác ABC vuông ở A . Vẽ đường tròn đường kính AB cắt cạnh BC tại D . Trên cung AD lấy E . BE kéo dài cắt ÁC ở F. CMR : a) Tứ giác CDEF nt b) Kéo dài DE cắt AC ở K . Tia p/g góc CKD cắt EF,CD ở M,N . Tia p/g góc CBF cắt DE,CF tại P,Q . CM : Tứ giác MPNQ là hình thoi c) Gọi r1 , r2 lần lượt là bán kính đường tròn nội tiếp tam giác ABC , ABD , ACD . CMR : \(r^2=r1^2+r2^2\)
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn O , hai đường cao BE,CF cắt nhau tại H . Tia AO cắt đường tròn O tại D
a, Cmr các điểm B,C,E,F thuộc 1 đường tròn
b, Cmr tứ giác BHCD là hình bình hành
c, Gọi M là trung điểm của tia BC, tia AM cắt HO tại G. Cmr G là trọng tâm tam giác ABC
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
***** ddef cương tết ''.''
Cho tam giác ABC nội tiếp (O) các đường cao AD, BE, CF đồng quy tại H. CÁc tia AD, BE, CF cắt (O) tại các điểmthứ hai tương ứng A' ; B' ;C'
a) CMR AB,BC, CA là trung trực của các đoạn thẳng tương ứng HC' HA' HB'
b) CMR H là tâm đường tròn nội tiếp tam giác DEF