Cho n∈N, Chứng minh rằng nếu n+1 và 2n+1 là các số chính phương thì n là bội của 24
Tìm tất cả các số nguyên dương \(n\) thỏa mãn \(n+3\) và \(n^3+2n^2+1\) đều là số chính phương .
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Chứng minh rằng với \(n\in N\) thì A là số chính phương biết:
\(A=\left(10^n+10^{n-1}....+10+1\right)\left(10^{n+1}+5\right)+1\)
Cho dãy số thực dương (xn). Chứng minh rằng tồn tại vô số số nguyên dương n thỏa mãn \(1+x_n>\sqrt[n]{2}x_{n-1}\).
Chứng minh rằng với mọi số nguyên dương n mà \(n\equiv1\) ( mod 4) thì
\(\dfrac{n.\left(n+1\right)\left(n+3\right)\left(n+5\right)}{2}=P\) luôn luôn không thể là số lập phương
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn gợi ý giúp đỡ với ạ, em cám ơn nhiều ạ!
Cho hai số nguyên dương \(a;b\) thỏa mãn điều kiện \(2a+5b\) và \(2b+5a\) đều là số chính phương . Chứng minh rằng cả hai số \(a;b\) cùng chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Chứng minh rằng với mọi số nguyên dương \(n\) thì \(n^4+4.n^3+7.n^2+6n+3\) luôn luôn không là số lập phương .
P/s: em in phép nhờ quý thầy cô giáo và các bạn trong nhóm hỗ trợ và giúp đỡ em tham khảo với ạ, em cám ơn nhiều ạ!
Cho phương trình: x2 - 6x + 2n - 3 = 0 (với n là tham số). Tìm n để phương trình trên có 2 nghiệm phân biệt x1, x2 thỏa mãn:
(x12 - 5x1 + 2n - 4)(x22 - 5x2 + 2n - 4) = -4