\(M=\frac{5}{9x^2-6x+\frac{9}{4}}=\frac{5}{\left(3x\right)^2-6x+1+\frac{5}{4}}=\frac{5}{\left(3x-1\right)^2+\frac{5}{4}}\)
Có \(\left(3x-1\right)^2\ge0\) vs mọi x
<=> \(\left(3x-1\right)^2+\frac{5}{4}\ge\frac{5}{4}\) vs mọi x
<=> \(\frac{5}{\left(3x-1\right)^2+\frac{5}{4}}\le\frac{5}{\frac{5}{4}}=4\) với mọi x
<=> M\(\le4\)
Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)
Vậy maxM=4 <=> x=\(\frac{1}{3}\)