Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
Chắc đề phải là \(u_1=1\) mới đúng (nãy ko để ý, ai cho \(u_n=1\) bao giờ, điều đó đồng nghĩa mọi số hạng của dãy đều bằng 1, phi lý)
Thử truy hồi theo lượng giác để tìm CTTQ của dãy (mặc dù điều này sẽ không chứng minh được \(u_k\) hữu tỉ, vì chứng minh 1 giá trị lương giác là hữu tỉ rất khó)
Hiển nhiên dãy đã cho là dãy dương
\(u_{n+1}^2=1+2u_nu_{n+1}>1+u_nu_{n+1}\Rightarrow u_{n+1}>\dfrac{1}{u_{n+1}}+u_n\)
\(\Rightarrow u_{n+1}-u_n>\dfrac{1}{u_{n+1}}>0\)
Do đó: \(u_{n+1}^2=1+2u_nu_{n+1}\Leftrightarrow u_{n+1}^2-2u_nu_{n+1}+u_n^2=u_n^2+1\)
\(\Leftrightarrow\left(u_{n+1}-u_n\right)^2=u_n^2+1\Rightarrow u_{n+1}=u_n+\sqrt{u_n^2+1}\)
Có: \(u_1=1=tan\dfrac{\pi}{4}\)
\(u_2=tan\dfrac{\pi}{4}+\sqrt{tan^2\dfrac{\pi}{4}+1}=tan\dfrac{\pi}{4}+\dfrac{1}{cos\dfrac{\pi}{4}}=\dfrac{sin\dfrac{\pi}{4}+1}{cos\dfrac{\pi}{4}}=\dfrac{sin\dfrac{\pi}{8}+cos\dfrac{\pi}{8}}{cos\dfrac{\pi}{8}-sin\dfrac{\pi}{8}}\)
\(=tan\left(\dfrac{\pi}{8}+\dfrac{\pi}{4}\right)=tan\left(\dfrac{\pi}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}\right)\right)\)
\(u_3=tan\left(\dfrac{\dfrac{\pi}{8}+\dfrac{\pi}{4}}{2}+\dfrac{\pi}{4}\right)=tan\left(\dfrac{\pi}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}\right)\right)\)
\(u_4=tan\left(\dfrac{\dfrac{\pi}{16}+\dfrac{\pi}{4}\left(1+\dfrac{1}{2}\right)}{2}+\dfrac{\pi}{4}\right)=tan\left(\dfrac{\pi}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)\right)\)
Vậy có thể tổng quát được:
\(u_n=tan\left(\dfrac{\pi}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^n}\right)\right)=tan\left(\dfrac{\pi}{2}\left(1-\dfrac{1}{2^n}\right)\right)=tan\left(\dfrac{\pi}{2}-\dfrac{\pi}{2^{n+1}}\right)\)
\(\Rightarrow u_{10}=tan\left(\dfrac{\pi}{2}-\dfrac{\pi}{2^{11}}\right)\)