Do \(\lim\limits_{x\rightarrow\infty}\frac{x+1-\sqrt{x^2+3x}}{x^2+\left(m+1\right)x-m-2}=0\) với mọi m nên hàm số luôn có 1 tiệm cận ngang \(y=0\)
Để hàm số có đúng 2 tiệm cận thì nó có thêm đúng 1 tiệm cận đứng
Xét 2 hàm số:
\(\left\{{}\begin{matrix}g\left(x\right)=x+1-\sqrt{x^2+3x}\\f\left(x\right)=x^2+\left(m+1\right)x-m-2=\left(x-1\right)\left(x+m+2\right)\end{matrix}\right.\)
Do \(f\left(x\right)\) và \(g\left(x\right)\) có 1 nghiệm chung \(x=1\) nên bài toán thỏa mãn khi:
TH1: \(m+2=-1\Rightarrow m=-3\)
TH2: \(\left\{{}\begin{matrix}m\ne-3\\\left[{}\begin{matrix}-m-2\ge0\\-m-2\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-3\\\left[{}\begin{matrix}m\le-2\\m\ge1\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m\ge1\\m\le-2\end{matrix}\right.\)