b: Giả sử \(\dfrac{a-1}{3}=\dfrac{-2}{a}\)
=>a^2-a=-6
=>a^2-a+6=0(vô lý)
=>\(\dfrac{a-1}{3}< >-\dfrac{2}{a}\)
=>Hệ luôn có nghiệm duy nhất
a: Khi a=2 thì hệ sẽ là x-2y=1 và 3x+y=1
=>x=3/7; y=-2/7
b: Giả sử \(\dfrac{a-1}{3}=\dfrac{-2}{a}\)
=>a^2-a=-6
=>a^2-a+6=0(vô lý)
=>\(\dfrac{a-1}{3}< >-\dfrac{2}{a}\)
=>Hệ luôn có nghiệm duy nhất
a: Khi a=2 thì hệ sẽ là x-2y=1 và 3x+y=1
=>x=3/7; y=-2/7
Cho HPT: \(\left\{{}\begin{matrix}ax+y=3\\x+ay=-1\end{matrix}\right.\).Tìm a để HPT có nghiệm là cặp số (x;y) trong đó x=2
Cho HPT: \(\left\{{}\begin{matrix}ax+y=3\\x+ay=-1\end{matrix}\right.\). Tìm a để HPT có nghiệm là cặp số (x;y) trong đó x=2
Cho HPT: \(\left\{{}\begin{matrix}\left(a+1\right)x+ay=2a-1\\ax-y=a^2-2\end{matrix}\right.\). Tìm a để HPT có nghiệm (x;y)=(0;1)
Bài 5 : cho HPT : \(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a/ Giải HPT khi m = -3
b/ Tìm m để HPT có nghiệm duy nhất ( x;y ) thỏa mãn điều kiện \(x+y^2=1\)
cho hpt:\(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
a. giải hpt khi m=2
b.tìm giá trị của m để hpt có nghiệm duy nhất
Cho HPT: \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\)( a là tham số). Tìm a để HPT có nghiệm (x=-4; y=4a)
1.Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+y+xy=2m+1\\xy\left(x+y\right)=m^2+m\end{matrix}\right.\)
CMR: hpt luôn có nghiệm mọi x
Xác định m để hpt có no duy nhất
2. Tìm liên hệ của a;b để hệ sau có nghiệm
a)\(\left\{{}\begin{matrix}x^2+y^2=2\\xy=b\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x^2-y^2=a\\2xy=b\end{matrix}\right.\)
3.Cho hpt \(\left\{{}\begin{matrix}x^2+y^2=a^2-2\\x+y=2a-3\end{matrix}\right.\)
Gọi (x;y) là no của hệ, xác định a để xy đạt gtnn
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Cho hpt : \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
m là tham số
a) Giải hpt với m = - \(\sqrt{2}\)
b) Xác định điều kiện của m để hpt có nghiệm duy nhất thỏa mãn x + y > 0